首页> 外文OA文献 >Hough-CNN: Deep Learning for Segmentation of Deep Brain Regions in MRI and Ultrasound
【2h】

Hough-CNN: Deep Learning for Segmentation of Deep Brain Regions in MRI and Ultrasound

机译:Hough-CNN:mRI中深部脑区域分割的深度学习   和超声波

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we propose a novel approach to perform segmentation byleveraging the abstraction capabilities of convolutional neural networks(CNNs). Our method is based on Hough voting, a strategy that allows for fullyautomatic localisation and segmentation of the anatomies of interest. Thisapproach does not only use the CNN classification outcomes, but it alsoimplements voting by exploiting the features produced by the deepest portion ofthe network. We show that this learning-based segmentation method is robust,multi-region, flexible and can be easily adapted to different modalities. Inthe attempt to show the capabilities and the behaviour of CNNs when they areapplied to medical image analysis, we perform a systematic study of theperformances of six different network architectures, conceived according tostate-of-the-art criteria, in various situations. We evaluate the impact ofboth different amount of training data and different data dimensionality (2D,2.5D and 3D) on the final results. We show results on both MRI and transcranialUS volumes depicting respectively 26 regions of the basal ganglia and themidbrain.
机译:在这项工作中,我们提出了一种利用卷积神经网络(CNN)的抽象功能来执行分割的新颖方法。我们的方法基于霍夫投票,该策略允许对感兴趣的解剖结构进行全自动定位和分割。该方法不仅使用CNN分类结果,而且还通过利用网络最深层部分产生的功能来实施投票。我们表明,这种基于学习的分割方法是鲁棒的,多区域的,灵活的,并且可以轻松地适应不同的模态。为了展示CNN在医学图像分析中的功能和行为,我们对在不同情况下根据最新标准构想的六种不同网络体系结构的性能进行了系统的研究。我们评估了不同数量的训练数据和不同数据维度(2D,2.5D和3D)对最终结果的影响。我们显示MRI和经颅US量的结果,分别描述了基底神经节和中脑的26个区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号